
A Reinforcement Learning Approach
for Adaptive Single- and Multi-Document Summarization

Stefan Henß
TU Darmstadt,

Germany
stefan.henss@gmail.com

Margot Mieskes
h da Darmstadt & AIPHES∗

Germany
margot.mieskes@h-da.de

Iryna Gurevych
TU Darmstadt & AIPHES∗

Germany
gurevych@ukp.informatik.tu-darmstadt.de

Abstract

Reinforcement Learning (RL) is a generic
framework for modeling decision making
processes and as such very suited to the
task of automatic summarization. In this
paper we present a RL method, which
takes into account intermediate steps dur-
ing the creation of a summary. Further-
more, we introduce a new feature set,
which describes sentences with respect to
already selected sentences. We carry out
a range of experiments on various data
sets – including several DUC data sets,
but also scientific publications and ency-
clopedic articles. Our results show that
our approach a) successfully adapts to
data sets from various domains, b) out-
performs previous RL-based methods for
summarization and state-of-the-art sum-
marization systems in general, and c) can
be equally applied to single- and multi-
document summarization on various do-
mains and document lengths.

1 Introduction
In the history of research on automatic summa-
rization, only few systems have proven them-
selves capable of handling different summariza-
tion scenarios, domains and summarization needs
(e.g. single-document summarization vs. multi-
document summarization, summarization of news,
e-mails, tweets or meetings). Additionally, they
rarely take into account that the human summa-
rization procedure involves decisions about keep-
ing and/or deleting information (Friend, 2001).

Therefore, we propose Reinforcement Learning
(RL) for the task of summarization to model the
decision making process involved in producing an
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extractive summary, i.e. selecting sentences that
make up a summary. In our model, the algorithm
decides at each step during this selection process
which sentence to choose in order to compile an
“optimal” summary. As the definition of optimal-
ity depends on various factors such as summariza-
tion task, needs, domain etc., RL-based methods
are in principle highly adaptive to these factors.

Our major contributions are in introducting
a new feature set which makes use of the RL
methodology in describing sentences with respect
to already selected sentences. Second, we use Q-
learning in combination with supervised machine
learning instead of TD-learning, to model the ef-
fects of adding information with respect to any
given quality score or error function. Finally, we
evaluate our method on several data sets from var-
ious domains such as news, scientific publications
and encyclopedic articles. Additionally, we tested
our method on single- and multi-document sum-
marization scenarios. We compare our results both
to available systems and results published in the
literature and show that our proposed method out-
performs previous RL methods as well as common
summarization methods.

The paper is structured as follows: Section 2
presents background and related work. Section 3
contains details of our RL approach and how it dif-
fers from previous RL-based summarization meth-
ods. Section 4 describes the evaluation of our
methods, which data sets we use and the compar-
ison systems. Section 5 presents the results and a
discussion of our findings. Section 6 contains the
summary and future work.

2 Foundations and Related Work

The work presented here is based on two research
areas: automatic summarization and Reinforce-
ment Learning. As reviewing both in detail is be-
yond the scope of this article, we would like to
point the interested reader to works by Nenkova



and McKeown (2011), Mani and Maybury (1999)
and Mani (2001) inter alia for an overview of the
major developments in automatic summarization.
For a general introduction to RL, we refer to Sut-
ton and Barto (1998). RL itself has been adopted
by the Natural Language Processing (NLP) com-
munity for various tasks, among others dialog
modeling in Question-Answer-Policies (Misu et
al., 2012), for learning dialog management mod-
els (Ha et al., 2013), parsing (Zhang and Kwok,
2009) and natural language generation (Dethlefs et
al., 2011), which we will not go into details about.

2.1 Reinforcement Learning
RL models contain at least a set of states (st), pos-
sible actions (at) for each state, and rewards (rt)
(or penalties) received for performing actions or
reaching certain states. The objective of a RL al-
gorithm is to learn from past observations a policy
π that seeks desirable states and chooses optimal
actions with respect to cumulative future rewards.

Reward Function Rewards or penalties are an
important concept in RL, which can be used di-
rectly (“online”) for example through customer
feedback or indirectly (“offline”) during train-
ing. In many scenarios, collecting the maxi-
mum possible immediate rewards at each state
(greedy approach) does not yield the best long-
term rewards. Optimizing long-term rewards is of-
ten solved in RL using temporal-difference (TD)
learning, where states are valued in terms of their
long-term quality, i.e., the maximum sum of re-
wards one can collect from them. The value of a
state st can be expressed as follows:

V (st) = rt + E

[
n∑

i=t+1

ri|π∗
]
= rt +max

st+1

V (st+1) (1)

That is, the value of a state (st) equals the imme-
diate reward rt plus the expected maximum sum
of future rewards following an optimal policy π∗

from st on. This equals the immediate reward rt
plus the maximum value of any possible next state
st+1. Including expected future rewards also al-
lows providing rewards for finals states sn only
(e.g., rating the final summary). These rewards are
thus passed through to a function V (st).

With large state spaces, V has to be approx-
imated using features of st: V̂ (st) ≈ V (st),
as due to the recursion V (st+1) when calculat-
ing V (st), computing an exact V (st) for each
st is unfeasible, as one would have to consider
all possible paths st+1, ..., sn through states fol-
lowing st. Finding an approximation V̂ can be

achieved through various training algorithms, such
as TD(λ) (Sutton and Barto, 1998). Given any V̂ ,
defining a policy π is straight-forward: At each
state st, perform the action that yields the maxi-
mum (estimated) next-state value V̂ (st+1).
Q Learning
Instead of estimating the value of each possible

next state, Q learning models the value Q(st, at)
of performing an action at in the current state st.
Facing the large state space of all pairs (st, at), Q
values are also typically not computed exactly for
each possible pair individually, but approximated
using features of st and at. As one knows which
state st+1 an action at leads to in a determinis-
tic environment, the value of leading to st+1 is
equivalent to the value of being at st+1. Other-
wise, Q learning is equally based on optimizing
cumulative future rewards, and thus the definition
of an optimalQ(st, at) reflects the value of a state-
action pair.

2.2 RL in Automatic Summarization
To our knowledge, Ryang and Abekawa (2012)
(henceforth R&A(2012)) have so far been the first
ones who employed RL for the task of summa-
rization. The authors consider the extractive sum-
marization task as a search problem, finding the
textual units to extract for the summary, where the
“final result of evaluation [. . .] is not available un-
til it finishes” (Ryang and Abekawa, 2012, p. 257).
In their framework, a state is a subset of sentences
and actions are transitions from one state to the
next. Rewards are given “if and only if the exe-
cuted action is Finish and the summary length is
appropriate” (Ryang and Abekawa, 2012, p. 259).
Otherwise a penalty (i.e. a negative reward) is
awarded. Therefore, they only consider the final
score of the whole summary. They define the op-
timal policy as a conditional distribution of an ac-
tion with regards to the state and the rewards. For
learning, they use TD(λ). The method was eval-
uated using the DUC2004 data set (see Section 4
below), and for each cluster, an individual policy
was derived.

Recently, Rioux et al. (2014) extended this ap-
proach, also using TD. As features, they used
bi-grams instead of tf ∗ idf values and em-
ployed ROUGE as part of their reward function.
Their evaluation was carried out on the DUC2004
and 2006 general and topic-based multi document
summarization and showed that they significantly
outperformed previous approaches.



3 Our Method for RL-based
Summarization

Similar to R&A(2012), we model each summa-
rization state st as a subset of sentences (i.e. a
potentially incomplete summary) from the source
document(s) to be summarized. For any state st,
there exists a set of possible actionsAs to proceed.
For us, those are select actions for all remaining
candidate sentences c ∈ D \ S, whose selection
would not violate a length threshold LC:

As = {c | c ∈ D \ S, length({c} ∪ S) ≤ LC} (2)

There are three fundamental differences be-
tween our approach and the approach proposed by
R&A(2012): First, we define the reward function
differently. We use rewards during training, based
on the reference summaries available. R&A(2012)
did not use reference summaries for their rewards,
but only define an intrinsic reward function as their
focus is on finding an optimal summary with re-
spect to a fixed quality model. We focus on learn-
ing selection policies for optimal summaries from
external feedback during a training phase. The for-
mal details of this are given below.

The second difference lies in using Q learning.
This helps us in determining the value of the par-
tial summary st+1 and the value of adding sen-
tence at to state st. The formal details of this will
be presented below.

Finally, our method learns one global policy for
a specific summarization task, instead of one pol-
icy for each document cluster as in R&A(2012).

Reward Functions During training, we give re-
wards to a specific action by comparing the re-
sulting state to an expected outcome (e.g. given
through reference summaries). In the case of sum-
marization, the state is a summary which can still
be incomplete and the action is the addition of a
sentence to this summary.

From our experiments, we found that the in-
crease of the partial summary’s evaluation score is
a good training feedback for a sentence addition,
which is reflected in the equation below:

rt = score(st+1;HD)− score(st;HD) (3)

In principle, any scoring function for rating the
quality of the summary is applicable, thus allow-
ing a flexible adaptation to different summariza-
tion objectives and quality criteria. In our evalua-
tion, we use ROUGE (Lin, 2004b) to rate each sum-
mary with respect to the corresponding human ref-
erence summaries HD (see Section 4 for details).

Q Learning Previous approaches to RL-based
summarization used TD learning. But despite
many recent variations of TD learning (see Sec-
tion 2.1) with linear approximation, for example
by Sutton et al. (2009), issues remain in their ap-
plication for complex tasks such as summariza-
tion. First, especially when not using feature trans-
formations like kernel methods, linear models may
lack the power of approximating state values pre-
cisely. Second, we only know the latest model co-
efficients, but lack records of past observations –
i.e., specific (st, at) and their rewards – that may
be leveraged by more advanced learning methods
to discover complex patterns.

Therefore, we use reward functions that de-
pend on human summaries HD, during a dedi-
cated training phase, i.e., learning an approxima-
tion of Q(st, at). During training, we create sum-
maries, compare them with given HD and com-
pute rewards as shown above. Finally, we use
those rewards in a Q learning algorithm. This is
different to R&A(2012) who do not use reference
summaries in learning their reward function and
thus do not make use of the available, separate
training data for learning the state values V̂ (st).
By using HD, our approach has more capabilities
of adopting features of a specific data set by re-
ceiving rewards aligned with the training data and
evaluation metrics.

As stated earlier, Q learning allows us to model
the value of the next state st after performing ac-
tion at. Q values are typically learned through up-
dates, where the old model is changed according
to the difference between the expected Q(st, at)
and its recalculation based on the reward rt+1 just
received:
Q(st, at)← Q(st, at)

+ α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)]

(4)

The difference in Q is added to the old value
with a scaling factor α (the learning rate). The
discount factor γ emphasizes short-term rewards
(see also Table 1). Using approximations of
Q(st, at), this typically means updating the global
coefficients used for the linear combination of fea-
tures of any pair (st, at), such as in the gradient
descent algorithm (Sutton and Barto, 1998).

We learn our policy on a fixed number of train-
ing summaries (so-called episodes). In case of less
training summaries than episodes desired, sum-
maries can be used multiple times. As the obser-
vations made from a training summary depend on



the strategy learned so far, re-visiting summaries
can yield new information each time they are used.
During those episodes, a limited number of pairs
of (st, at) are observed, and statistical models
based on features of those pairs may suffer from
insufficient observations. For example, there may
have been few examples of selecting short sen-
tences during training and any correlation between
sentence length and summary quality thus may
be insignificant. We therefore consider a trade-
off between following the most promising actions
and exploring seemingly bad decisions that have
rarely been made so far. The former strategy re-
peatedly performs similar actions to learn to better
distinguish between the most promising actions,
while the latter accounts for wrong estimates by
performing “bad” actions and updating the model
accordingly if they prove to be rewarding instead.
Therefore, during training, we use an ε-greedy
strategy, which sometimes selects a random action
rather than the most promising one. This is shown
in the equation below,

πε(st) =

{
argmaxat Q̂(st, at), x ∼ [0, 1] ≥ εep
at+1 ∼ At, else

(5)
where, ep denotes the number of training

episodes, i.e. for ε < 1, selecting the most promis-
ing action over a random selection becomes more
likely with more training episodes. Using 1,000
training episodes, we chose ε = 0.999, i.e., for the
first episode the selection is purely random, but
during the second half of the training, we only fol-
low the best strategy for optimizing the model co-
efficients along those decisions. Once training is
completed, our policy is to always choose the ac-
tion at with the highest corresponding Q̂(st, at),
resulting in one policy for the whole task/data set.

To summarize, during training we collect the
features of pairs (st, at) and their corresponding
Q̂ values at the time after observing rt+1. Know-
ing the following state st+1, we not only use
features of (st, at) but also include features of
(st, at, st+1). We can then use any supervised ma-
chine learning algorithm to learn correlations be-
tween those triples and corresponding Q̂ values.
In our observations, this allows for more precise
estimates of Q. The supervised machine learn-
ing algorithm in our system is a gradient boost-
ing model (Friedman, 2002), where Q is updated
every 500 actions during our training phase, us-
ing the samples of (st, at, st+1) and correspond-
ing Q̂ as described. With several thousand actions

during training, this update rate is sufficient and
allows for more complex models that would take
too much time with more frequent updates. Gradi-
ent boosting iteratively reduces the error of simple
regression trees by training a new tree predicting
the previous’ error. Thereby, our method is able
to capture non-linear feature interactions and it is
not prone to overfitting, due to the discretization
in the basic regression trees and optimization pa-
rameters, such as maximum tree depth.

Algorithm 1 Learning Q
samples← ∅
for i = 1 to episodes do

ep← i mod |training summaries|
t← 0, st ← ∅
while length(st) ≤ LC, Ast,ep 6= ∅ do

if x ∼ U(0, 1) < 1− εi then
at ← argmaxa∈Ast,ep

Q̂(st, a)

else
at ∼ Aep,st

end if
st+1 ← st ∪ {at}
rt ← reward(st, at, st+1;Hep)

Rt ← rt + γmaxa∈Aep,st+1
Q̂(st+1, a)

samples← samples ∪ {((st, at, st+1), Rt)}
if |samples| mod 500 = 0 then

Q̂← learn-gradient-boosting-model(samples)
end if
t← t+ 1

end while
end for

Our algorithm for learning the RL policy is
shown in Algorithm 1. The regression, which pre-
dicts features for states and actions, we use gradi-
ent boosting as described in Friedman (1999).

Finally, once the training phase is completed,
we use the latest gradient boosting model of Q̂ to
define our policy, i.e., always selecting the most
promising actions in its application.

4 Experimental Setup

In this section we describe the data sets, system
configuration and evaluation method we used to
assess the quality of our algorithm.

Data sets In order to evaluate our method and to
compare it to the results published by R&A(2012),
we use the DUC20041 data set. Additionally, we
use the DUC2001 and DUC2002 data sets, as they
have been frequently used in the past as evalu-
ation data sets. These also offer the advantage,
that they do not only contain multi-document sum-
marization (MDS) tasks, but also single-document

1for all DUC related information see http://duc.
nist.gov/



summarization (SDS), which allows us to prove
the applicability of our proposed method also to
SDS. Using the standard training-/test-set splits
provided by NIST, we are able to compare our re-
sults to those published in the literature.

But as these three data sets entirely consist of
news texts, we decided to add other genres as
well. Two less explored data sets are the ACL-
Anthology Reference Corpus (ACL-ARC)2 (Bird
et al., 2008), which contains scientific documents
from the NLP domain and Wikipedia3 (Kubina
et al., 2013), which contains encyclopedic docu-
ments from a wide range of domains. Both are
used in a single document summarization task.
Additionally, both the documents and the data sets
themselves are considerably larger than the DUC
data sets. These data sets allow us to show that our
method performs well on a range of genres and
domains and that it can also handle considerably
larger documents and data sets.

For the DUC data sets several manual sum-
maries are available for the evaluation. For the
ACL-ARC we use the abstracts as reference sum-
maries, as it has been done in the past by e.g.
Ceylan et al. (2010). Whereas for the Wikipedia,
the first paragraph can be regarded as a reference
summary, as it has been done by e.g. Kubina et
al. (2013). The target lengths for the DUC sum-
marization scenarios are taken from the respec-
tive guidelines4. The target lengths for ACL and
Wikipedia have been determined through the av-
erage length of the reference summaries.

System Setup Our method uses several param-
eters which have to be set prior to training. Ta-
ble 1 lists these and the settings we used. The main
difference between the setup for the DUC and the
ACL/Wikipedia-Data is the number of boosting it-
erations (400 vs. 800) and the maximal tree depth
(16 vs. 10), which is due to the length differences
in the three document sets.

We determined the settings for the listed param-
eters experimentally. Our aim was to avoid overfit-
ting, while still training predictive models in rea-
sonable time. The parameter settings in Table 1
were found to give the best performance.

The individual parameters influence various as-
pects of the training. The more training episodes
used, the better the results were. But the number

2http://acl-arc.comp.nus.edu.sg/
3http://goo.gl/ySgOS based on (Kubina et al.,

2013)
4http://www-nlpir.nist.gov/projects/

duc/guidelines.html

Parameter DUC ACL/Wiki
Training episodes 1200 1200
Discount factor 0.01 0.01
ε-greedy 0.999episode 0.999episode

Boosting iterations 400 800
Shrinkage 0.04 0.04
Max. tree depth 16 10
Min. leaf observations 50 50

Table 1: Experimentally determined parameters used during
training and evaluation.

of episodes had to be balanced against overfitting
caused by the other parameters. The Discount fac-
tor weights the contribution of a specific reward
once an action has been performed. A too high
factor can lead to overfitting. The ε-greedy param-
eter guides how likely it is, that a random action
is performed, as this can potentially also lead to
an optimal result and is therefore worth explor-
ing. During training, the likelihood of choosing
a random action is decreased and the likelihood
of choosing an optimal action is increased. The
boosting iterations guide the training for the gradi-
ent boosting. Here, it is crucial to find the balance
between good results and computing time, as each
training iteration is very time-consuming. Shrink-
age is similar to the learning rate in other learn-
ing methods. We had to balance this parameter
between good results and time. The smaller this
value is set, the longer each iteration takes and
accordingly the training. Max. tree depth refers
to the size of the regression trees trained by the
gradient boosting method. Small trees can hardly
generalize, whereas big trees tend to overfit on the
training data. Min. leaf observations also refers
to the regression trees. If the leafs are based on
too few training observations, the resulting rules
might be based on random observations or overfit
on too few observations.

Features The features we use can be grouped
into three categories: basic features, linguistic and
information retrieval (IR) based features and RL-
specific features, which we describe in detail be-
low. The three lists presented here make up the
whole set of features used in this work.

Basic and IR-based features The group of
basic and IR-based features contains features that
are generally used in a wide variety of NLP-tasks,
such as text classification (see for example (Man-
ning and Raghavan, 2009, Chp. 13)). They capture
surface characteristics of documents, sentences
and words, such as the number of tokens, the po-
sition of a sentence in a document and the relation
between the number of characters and the number



Basic/Surface Features Linguistics and IR-based Features
# of tokens in sentence mean/max/sum of the sentence’s stop word-filtered tokens
# of characters in sentence total/relative term frequencies (tf ) in the source document(s) (docs)
# of characters per #tokens mean tf compared to the entire corpus, using stemming and tf ∗ idf
# of upper case characters per #tokens the sentence’s mean/min/max cosine similarity (cs) compared to all other sentences in

the docs, stemmed, stop words filtered, bi-grams
absolute position of sentence cs between the tf ∗ idf of the sentence and the combined source docs’ tf ∗ idf
relative position of sentence mean/max/min cs compared to the sentence’s tf vector with those of each source doc
distance of sentence from end readability score of the sentence
# of chars in sentence before/after mean/total information content of the tokens (Resnik, 1995)
total # of stop words in sentence
# of stop words per # of tokens

Table 2: Basic and commonly used features to describe candidate documents, sentences and words in isolation.

of tokens. In addition to the already mentioned
surface features, we make use of the ratio for ex-
ample of the numbers of characters per token. We
take into account the stop words in a sentence and
the number of stop words in relation to tokens.
These features focus on describing the elements
of a single sentence or token viewed in isolation.

The surface features only describe sentences or
words in the context of the local sentence. We use
a set of similar features to describe words and sen-
tences in relation to the whole document. Addi-
tionally, we make use of standard linguistic and
IR-based features. These features characterize a
sentence in terms of the accumulated tf ∗ idf val-
ues compared to the document or the document
cluster. Other, more linguistically oriented fea-
tures are based on the cosine similarity between a
sentence and all other sentences in the document.
Finally, we make use of higher level analysis, such
as the readability score (Flesch, 1948; Kincaid et
al., 1975). Table 2 shows the full list of basic fea-
tures (right side) and IR-based features (left side).

RL-based features The third group of features
makes use of the specific characteristics of RL and
are to our knowledge new to the area of machine
learning based summarization. The previous two
feature groups describe words and sentences in
their local context or in relation to the document
they occur in. The RL-based features describe a
sentence in the context of the previously selected
sentences and how adding this sentence changes
the current, hypothetical summary. We also use
surface features, such as the number of charac-
ters or tokens after the candidate sentence has been
added to the already selected sentences. We con-
sider the cosine similarity between the candidate
sentence and the sentences selected so far as well.
Additionally, we determine the ROUGE scores of
the hypothetical summary and use the difference
between the summary with and without the can-

didate sentence as a feature. This is based on the
definition of “optimality” we use in this work (see
also Section 1 above). Using ROUGE as part of
the features is not problematic in this case, as we
use explicit training data to train our reward func-
tion, which is then applied to the testing data. The
splits are based on the NIST training- and test-sets
for the DUC data. The ACL-ARC and Wikipedia
data are sufficiently large to be split into two dif-
ferent sets: 5506 for training, 614 for testing for
ACL-ARC and 1936 for training, 900 for testing
for Wikipedia.

Baselines and Reference Systems We use var-
ious baselines and references: First, we use stan-
dard baselines such as HEAD and RANDOM to pro-
duce summaries of the data. Second, we use
figures reported in the literature. Finally, we
make use of available summarization algorithm
implementations such as MEAD, SVM and SUMY5

to produce summaries of the data. SUMY con-
tains implementations of several well-known sum-
marization methods, among them the algorithm
described by Luhn (1958) (Luhn (sumy)), the
LSA-based summarization method described by
Gong and Liu (2001) (LSA (sumy)), the LexRank
algorithm (Erkan and Radev, 2004) (LexRank
(sumy)) and the TextRank algorithm (Mihalcea
and Tarau, 2005) (TextRank (sumy)). This is
especially useful for those data sets that have not
yet been extensively used, such as the ACL-ARC
and the Wikipedia.

In order to test the contribution of our features
and the RL methodology, we used the RL method-
ology with the individual feature groups. RL-basic
uses the surface features, RL-advanced uses the
IR-based features, RL-non-RL uses both groups
and RL-RL uses the RL methodology with the
RL features only. Additionally, we implement a
Learning-to-Rank (L2R) algorithm to examine the

5https://github.com/miso-belica/sumy



Feature Description
- new total length in characters and tokens when adding the sentence associated with an RL action
- partial summaries before and after adding a sentence are compared to each source document using ROUGE precision and
recall, and cosine similarity; we add features for the mean/min/max/summed differences between both summaries
- mean/min/max cosine similarities between the new sentence and each sentence already included in the summary

Table 3: Reinforcement learning specific features to reflect changes during the creation of the summary.

performance of our features, regardless of the RL
methodology and use a standard regression-based
learning as implemented in WEKA6.

Evaluation We use the ROUGE framework
(Lin, 2004b), which is a standard automatic
evaluation metric and which allows for com-
parison between previously reported results and
ours. We use ROUGE with the following parame-
ters: -n 4 -m -c 95 -r 1000 -f -A -p
0.5 -t 0 -w 1.2 -2. Changes for the
length constraint were made for DUC 2004 as re-
quired (-b 665 vs. -l 100) in the guidelines7.
For the ACL data, we used the target length of 100
words (-l 100), whereas for the Wikipedia data,
we used a target length of 290 words (-l 290),
to reflect the average summary length.

5 Results and Discussion

Our results are indicated with RL-full, which is the
RL method using the full feature set. Addition-
ally, we use L2R, which is the learning-to-rank
method, using the non-RL features and Regres-
sion, which is a standard regression method us-
ing the non-RL features. We also determined the
benefit of individual feature groups, such as using
the RL-method only in combination with the sur-
face features (RL-Surface), the IR- and linguistic
based features (RL-Basic) or only the RL-specific
features (RL-RL).

Previous RL-based summarization methods
were evaluated on the DUC 2004 data set. Table 4
shows the previously reported results compared to
our methods. As can be seen, our method clearly
outperforms previously published results on R-1.
Rioux et al. (2014) achieved a higher R-2 score.
This is based on our choice of R-1 as the optimal-
ity score, which was based on the correlation be-
tween human scores and R-1 (Lin, 2004a).

Rouge R&A(2012) R(2014) RL-full
R-1 0.3901 0.4034 0.4042
R-2 0.0948 0.1140 0.1012

Table 4: Results for the Multi-Document Scenario based on
the DUC 2004 data set, compared to previously reported re-
sults.

6http://www.cs.waikato.ac.nz/ml/weka/
7http://duc.nist.gov/duc2004/tasks.

html

Year System R-1 R-2
2001 Manna et al. (2012) 0.3306

Luhn(sumy) 0.3218 0.0454
RL-full 0.3387 0.0740

2002 Manna et al. (2012) 0.3371
Luhn(sumy) 0.3706 0.0741
RL-full 0.3660 0.0810

Table 5: Results on DUC 2001 and 2002 Multi-Document
Summarization Task.

Table 5 shows the results on the other two MDS
tasks (DUC 2001 and 2002), compared to the best
result in the literature and the best baseline system.
On the DUC2002 data set, the Luhn(sumy) base-
line performs better on R-1 than our method. On
DUC2001 and R-2 in general, our method gives
the best performance.

In order to show that our method is also appli-
cable to single document summarization and can
also handle larger document collections and longer
documents, we also applied our method to SDS
tasks of DUC2001 and 2002, ACL and Wikipedia.
Table 6 shows our results in comparison to base-
line methods. All results show that the full RL
setup is superior to other methods, including the
TextRank implementation. On DUC 2001, we
found a reported R-2 value of 0.204 by Ouyang
et al. (2010). The feature analysis shows that for
ACL-ARC and Wikipedia the results of the differ-
ent feature setups and regression learning methods
are significantly worse than the full RL setup.

Error Analysis We observed a range of er-
ror sources: First, manual inspection of the sum-
maries revealed that the automatic summaries
could serve as a valid summary, but the overlap be-
tween the automatic and the reference summaries
are very small. For example in the document
on “Superman” from the Wikipedia data (doc-
ument ID d34b0d339f3f88fe15a8baa17c9c5048),
the RL-based summary contained more infor-
mation about the character and in-world events,
whereas the reference summary contained more
information about real-world development.

The second problem is the too narrow focus
and too few details of our summaries. Consider-
ing the cluster on the Hurricane Mitch (D30002,
DUC2004), we observed that our summary fo-
cuses exclusively on the events regarding Hon-
duras and does neither mention the events on the



DUC 2001 DUC 2002 ACL Wiki
System R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2
TextRank(sumy) 0.4450 0.1866 0.4799 0.2240 0.3739 0.0844 0.4625 0.1256
L2R 0.4490 0.1934 0.4770 0.2181 0.3966 0.1052 0.4706 0.1276
Regression 0.4572 0.1942 0.4847 0.2187 0.3899 0.0883 0.4768 0.1261
RL-surface 0.4384 0.1849 0.4684 0.2130 0.3765 0.0875 0.4542 0.1086
RL-Basic 0.4264 0.1657 0.4539 0.1926 0.3693 0.0782 0.4645 0.1196
RL-RL 0.4005 0.1377 0.4350 0.1700 0.3325 0.0542 0.4721 0.1211
RL-full 0.4584 0.1993 0.4862 0.2252 0.4117 0.1102 0.4850 0.1321

Table 6: Results on the Single-Document-Summarization Scenario based on DUC, ACL and Wikipedia data sets, compared to
standard methods used in automatic summarization.

other islands nor the international call for aid.
Third, we observe that temporal information,

dates and numerical facts in general were rare
in our summaries (for example in the cluster on
the North Korean famine (D30017, DUC2004)).
Where numbers are included, we find that they are
mentioned in different formats, as opposed to the
reference, which makes it hard for ROUGE to spot
them. One example is from D30017, DUC2004,
where the references state that “Two thirds of chil-
dren under age 7 . . .”, whereas our summary con-
tains “Two thirds of children under age seven . . .”.

Fourth, we notice that on the ACL-ARC data
very often rows and columns of numbers are ex-
tracted, which represent results. While to some
extent this is valid in a summary, adding whole
tables is not beneficial. Work on translating fig-
ures and tables into text has been carried out in the
past, but is still an ongoing research topic (see for
example (Govindaraju et al., 2013)).

Fifth, we observe that the RL summarizer
picked direct speech for the summaries, which did
not provide additional information, whereas, di-
rect speech rarely occurs in the references. De-
tecting direct speech is also its own research topic
(see for example (Pareti et al., 2013)).

Finally, we notice that our method extracts con-
siderably longer sentences from the sources, than
are those contained in the reference summaries.
This problem could be reduced by adding sentence
compression to the whole setup.

6 Conclusion and Future Work

In this work, we presented our method for extrac-
tive summarization based on RL. We made use of
exemplary summaries in the training phase, im-
proved on the learning algorithm through imme-
diate RL rewards and modeling features of states
and actions, proposed a new, memory-based Q
learning algorithm, and used non-linear approx-
imation models. Our method produced global
policies for each summarization scenario, rather

than a local policy for individual clusters. Finally,
we introduced a novel feature set, which exploits
the capabilities of reinforcement learning to take
into account intermediate results in order to de-
termine the next optimal step. We showed that
our system outperforms state-of-the-art methods
both on single- and multi-document summariza-
tion tasks. Through several, systematic experi-
ments, we showed that the combination of the RL
method and the features we employed consider-
ably outperform comparison systems and compa-
rable system setups. Additionally, we show that
out method can be adapted to various summa-
rization tasks, such as single- and multi-document
summarization, but also to other data sets, such as
scientific and encyclopedic articles.

As our error analysis in Section 5 shows, there
is room for further improvement on various as-
pects. Some of these refer to other research top-
ics – such as textually describing tables and fig-
ures and detecting direct speech. But some as-
pects will be tackled in the future: First, reduc-
ing the sentence length by applying sentence com-
pression methods. This would allow us to add
more information to the summary without violat-
ing the length constraint, since we can include
more shorter sentences describing various aspects
of the summarized topic. The problem of differ-
ent formats of numbers and abbreviations could
be addressed through a normalization step before
evaluating. In general, names of persons, places
and organizations could be given more importance
through Named Entity Recognition features.

Finally, we would like to test our method in
other summarization scenarios, such as query-
based summarization or data sets such as Twitter.
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Lloret, and Manuel Palo. 2010. Quantifying the
limits and success of extractive summarization sys-
tems across domains. In Human Lanugage Techn-
logies: The 2010 Annual Conference of the North
American Chapter of the ACL, Los Angeles, Cali-
fornia, June 2010, pages 903–911.

Nina Dethlefs, Heriberto Cuyahuitl, and Jette Viethen.
2011. Optimising natural language generation deci-
sion making for situated dialogue. In Proceedings
of the 12th SIGdial Workshop on Discourse and Di-
alogue, Portland, Oregon, 17-18 June 2011.

Günes Erkan and Dragomir R. Radev. 2004. LexRank:
Graph-based Lexical Centrality as Salience in Text
Summarization. Journal of Artificial Intelligence
Research, 22:457–479, December.

Rudolf Flesch. 1948. A new readability yardstick. The
Journal of applied psychology, 32(3):221–233.

Jerome H. Friedman. 1999. Stochas-
tic gradient boosting. http://astro.
temple.edu/˜msobel/courses_files/
StochasticBoosting%28gradient%29.
pdf, March.

Jerome H Friedman. 2002. Stochastic gradient boost-
ing. Computational Statistics & Data Analysis,
38(4):367–378.

Rosalie Friend. 2001. Effects of Strategy Instruction
on Summary Writing of College Students. Contem-
porary Educational Psychology, 26(1):3–24, Jan-
uary.

Yihong Gong and Xin Liu. 2001. Generic Text Sum-
marization Using Relevance Measure and Latent Se-
mantic Analysis. Proceedings of the 24th Annual
International ACM SIGIR Conference on Research
and development in information retrieval (SIGIR-
01), pages 19–25.

Vidhya Govindaraju, Ce Zhang, and Christopher Ré.
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